Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0299640, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574051

RESUMO

The stringent response exerted by (p)ppGpp and RNA-polymerase binding protein DksA regulates gene expression in diverse bacterial species. To control gene expression (p)ppGpp, synthesized by enzymes RelA and SpoT, interacts with two sites within the RNA polymerase; site 1, located in the interphase between subunits ß' and ω (rpoZ), and site 2 located in the secondary channel that is dependent on DksA protein. In Escherichia coli, inactivation of dksA results in a reduced sigma factor RpoS expression. In Azotobacter vinelandii the synthesis of polyhydroxybutyrate (PHB) is under RpoS regulation. In this study, we found that the inactivation of relA or dksA, but not rpoZ, resulted in a negative effect on PHB synthesis. We also found that the dksA, but not the relA mutation reduced both rpoS transcription and RpoS protein levels, implying that (p)ppGpp and DksA control PHB synthesis through different mechanisms. Interestingly, despite expressing rpoS from a constitutive promoter in the dksA mutant, PHB synthesis was not restored to wild type levels. A transcriptomic analysis in the dksA mutant, revealed downregulation of genes encoding enzymes needed for the synthesis of acetyl-CoA, the precursor substrate for PHB synthesis. Together, these data indicate that DksA is required for optimal expression of RpoS which in turn activates transcription of genes for PHB synthesis. Additionally, DksA is required for optimal transcription of genes responsible for the synthesis of precursors for PHB synthesis.


Assuntos
Azotobacter vinelandii , Proteínas de Escherichia coli , Poli-Hidroxibutiratos , Proteínas de Escherichia coli/genética , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Guanosina Pentafosfato , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
PLoS One ; 18(11): e0286440, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37967103

RESUMO

In the Pseduomonadacea family, the extracytoplasmic function sigma factor AlgU is crucial to withstand adverse conditions. Azotobacter vinelandii, a closed relative of Pseudomonas aeruginosa, has been a model for cellular differentiation in Gram-negative bacteria since it forms desiccation-resistant cysts. Previous work demonstrated the essential role of AlgU to withstand oxidative stress and on A. vinelandii differentiation, particularly for the positive control of alginate production. In this study, the AlgU regulon was dissected by a proteomic approach under vegetative growing conditions and upon encystment induction. Our results revealed several molecular targets that explained the requirement of this sigma factor during oxidative stress and extended its role in alginate production. Furthermore, we demonstrate that AlgU was necessary to produce alkyl resorcinols, a type of aromatic lipids that conform the cell membrane of the differentiated cell. AlgU was also found to positively regulate stress resistance proteins such as OsmC, LEA-1, or proteins involved in trehalose synthesis. A position-specific scoring-matrix (PSSM) was generated based on the consensus sequence recognized by AlgU in P. aeruginosa, which allowed the identification of direct AlgU targets in the A. vinelandii genome. This work further expands our knowledge about the function of the ECF sigma factor AlgU in A. vinelandii and contributes to explains its key regulatory role under adverse conditions.


Assuntos
Azotobacter vinelandii , Fator sigma , Fator sigma/genética , Fator sigma/metabolismo , Regulon/genética , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Proteômica , Proteínas de Choque Térmico/metabolismo , Alginatos/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética
3.
Mol Microbiol ; 120(1): 91-102, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37328957

RESUMO

In several Gram-negative bacteria, the general stress response is mediated by the alternative sigma factor RpoS, a subunit of RNA polymerase that confers promoter specificity. In Escherichia coli, regulation of protein levels of RpoS involves the adaptor protein RssB, which binds RpoS for presenting it to the ClpXP protease for its degradation. However, in species from the Pseudomonadaceae family, RpoS is also degraded by ClpXP, but an adaptor has not been experimentally demonstrated. Here, we investigated the role of an E. coli RssB-like protein in two representative Pseudomonadaceae species such as Azotobacter vinelandii and Pseudomonas aeruginosa. In these bacteria, inactivation of the rssB gene increased the levels and stability of RpoS during exponential growth. Downstream of rssB lies a gene that encodes a protein annotated as an anti-sigma factor antagonist (rssC). However, inactivation of rssC in both A. vinelandii and P. aeruginosa also increased the RpoS protein levels, suggesting that RssB and RssC work together to control RpoS degradation. Furthermore, we identified an in vivo interaction between RssB and RpoS only in the presence of RssC using a bacterial three-hybrid system. We propose that both RssB and RssC are necessary for the ClpXP-dependent RpoS degradation during exponential growth in two species of the Pseudomonadaceae family.


Assuntos
Azotobacter vinelandii , Proteínas de Escherichia coli , Fator sigma/genética , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo , Escherichia coli/metabolismo , Proteínas de Ligação a DNA/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas de Escherichia coli/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
4.
FEMS Microbiol Lett ; 369(1)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36368695

RESUMO

Bacteria have a mechanism to rescue stalled ribosomes known as trans-translation consisting of SsrA, a transfer-messenger RNA (tmRNA), and the small protein SmpB. Other alternative rescue mechanisms mediated by ArfA and ArfB proteins are present only in some species. Ribosome rescue mechanisms also play a role in tolerance to antibiotics and various stresses such as heat. This study shows that the genome of the soil bacterium A. vinelandii harbours genes encoding for tmRNA, SmpB, two paralogs of ArfA (arfA1 and arfA2), and ArfB. A number of mutant strains carrying mutations in the ssrA, arfA1, arfA2, and arfB genes were constructed and tested for their growth and susceptibility to heat and the antibiotic tetracycline. We found that the inactivation of both ssrA and one or the two arfA genes was detrimental to growth and caused a higher susceptibility to heat and to the antibiotic tetracycline. Interestingly, the arfB mutant strain was unable to grow after 2 h of incubation at 45°C. Inactivation of arfB in the ssrA-arfA1-arfA2 strain caused a lethal phenotype since the quadruple mutant could not be isolated. Taken together, our data suggest that both arfA1 and arfA2, as well as arfB, are functional as back up mechanisms, and that the ArfB pathway has an essential role that confers A. vinelandii resistance to high temperatures.


Assuntos
Azotobacter vinelandii , Azotobacter vinelandii/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Temperatura Alta , Proteínas de Ligação a RNA/genética , Ribossomos/genética , Ribossomos/metabolismo , RNA Bacteriano/genética , Biossíntese de Proteínas , Tetraciclinas/metabolismo
5.
Appl Microbiol Biotechnol ; 106(17): 5551-5562, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35906439

RESUMO

Late embryogenesis abundant (LEA) proteins are hydrophilic proteins that lack a well-ordered tertiary structure and accumulate to high levels in response to water deficit, in organisms such as plants, fungi, and bacteria. The mechanisms proposed to protect cellular structures and enzymes are water replacement, ion sequestering, and membrane stabilization. The activity of some proteins has a limited shelf-life due to instability that can be caused by their structure or the presence of a stress condition that limits their activity; several LEA proteins have been shown to behave as cryoprotectants in vitro. Here, we report a group1 LEA from Azotobacter vinelandii AvLEA1, capable of conferring protection to lactate dehydrogenase, catechol dioxygenase, and Baylase peroxidase against freeze-thaw treatments, desiccation, and oxidative damage, making AvLEA a promising biological stabilizer reagent. This is the first evidence of protection provided by this LEA on enzymes with biotechnological potential, such as dioxygenase and peroxidase under in vitro stress conditions. Our results suggest that AvLEA could act as a molecular chaperone, or a "molecular shield," preventing either dissociation or antiaggregation, or as a radical scavenger, thus preventing damage to these target enzymes during induced stress. KEY POINTS: • This work expands the basic knowledge of the less-known bacterial LEA proteins and their in vitro protection potential. • AvLEA is a bacterial protein that confers in vitro protection to three enzymes with different characteristics and oligomeric arrangement. • The use of AvLEA as a stabilizer agent could be further explored using dioxygenase and peroxidase in bioremediation treatments. AvLEA1 protects against freeze-thaw treatments, desiccation, and oxidative damage on three different enzymes with biotechnological potential.


Assuntos
Proteínas de Bactérias , Dioxigenases , Desenvolvimento Embrionário , Peroxidases , Proteínas de Plantas , Água
6.
Microbiol Res ; 249: 126775, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33964629

RESUMO

In Pseudomonas spp. PsrA, a transcriptional activator of the rpoS gene, regulates fatty acid catabolism by repressing the fadBA5 ß-oxidation operon. In Azotobacter vinelandii, a soil bacterium closely related to Pseudomonas species, PsrA is also an activator of rpoS expression, although its participation in the regulation of lipid metabolism has not been analyzed. In this work we found that inactivation of psrA had no effect on the expression of ß-oxidation genes in this bacterium, but instead decreased expression of the unsaturated fatty acid biosynthetic operon fabAB (3-hydroxydecanoyl-ACP dehydratase/isomerase and 3-ketoacyl-ACP synthase I). This inactivation also reduced the unsaturated fatty acid content, as revealed by the thin-layer chromatographic analysis, and confirmed by gas chromatography; notably, there was also a lower content of cyclopropane fatty acids, which are synthesized from unsaturated fatty acids. The absence of PsrA has no effect on the growth rate, but showed loss of cell viability during long-term growth, in accordance with the role of these unsaturated and cyclopropane fatty acids in the protection of membranes. Finally, an electrophoretic mobility shift assay revealed specific binding of PsrA to the fabA promoter region, where a putative binding site for this regulator was located. Taken together, our data show that PsrA plays an important role in the regulation of unsaturated fatty acids metabolism in A. vinelandii by positively regulating fabAB.


Assuntos
Azotobacter vinelandii/genética , Ácidos Graxos Insaturados/biossíntese , Regulação Bacteriana da Expressão Gênica , Óperon , Fatores de Transcrição/metabolismo , Azotobacter vinelandii/crescimento & desenvolvimento , Azotobacter vinelandii/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciclopropanos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Viabilidade Microbiana , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/genética
7.
J Bacteriol ; 202(24)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32989088

RESUMO

Azotobacter vinelandii produces the linear exopolysaccharide alginate, a compound of significant biotechnological importance. The biosynthesis of alginate in A. vinelandii and Pseudomonas aeruginosa has several similarities but is regulated somewhat differently in the two microbes. Here, we show that the second messenger cyclic dimeric GMP (c-di-GMP) regulates the production and the molecular mass of alginate in A. vinelandii The hybrid protein MucG, containing conserved GGDEF and EAL domains and N-terminal HAMP and PAS domains, behaved as a c-di-GMP phosphodiesterase (PDE). This activity was found to negatively affect the amount and molecular mass of the polysaccharide formed. On the other hand, among the diguanylate cyclases (DGCs) present in A. vinelandii, AvGReg, a globin-coupled sensor (GCS) DGC that directly binds to oxygen, was identified as the main c-di-GMP-synthesizing contributor to alginate production. Overproduction of AvGReg in the parental strain phenocopied a ΔmucG strain with regard to alginate production and the molecular mass of the polymer. MucG was previously shown to prevent the synthesis of high-molecular-mass alginates in response to reduced oxygen transfer rates (OTRs). In this work, we show that cultures exposed to reduced OTRs accumulated higher levels of c-di-GMP; this finding strongly suggests that at least one of the molecular mechanisms involved in modulation of alginate production and molecular mass by oxygen depends on a c-di-GMP signaling module that includes the PAS domain-containing PDE MucG and the GCS DGC AvGReg.IMPORTANCE c-di-GMP has been widely recognized for its essential role in the production of exopolysaccharides in bacteria, such as alginate produced by Pseudomonas and Azotobacter spp. This study reveals that the levels of c-di-GMP also affect the physical properties of alginate, favoring the production of high-molecular-mass alginates in response to lower OTRs. This finding opens up new alternatives for the design of tailor-made alginates for biotechnological applications.


Assuntos
Alginatos/metabolismo , Azotobacter vinelandii/metabolismo , GMP Cíclico/análogos & derivados , Polissacarídeos Bacterianos/biossíntese , Alginatos/química , Azotobacter vinelandii/enzimologia , Azotobacter vinelandii/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Peso Molecular , Oxigênio/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Polissacarídeos Bacterianos/química
8.
J Bacteriol ; 202(24)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32989089

RESUMO

The genus Azotobacter, belonging to the Pseudomonadaceae family, is characterized by the formation of cysts, which are metabolically dormant cells produced under adverse conditions and able to resist desiccation. Although this developmental process has served as a model for the study of cell differentiation in Gram-negative bacteria, the molecular basis of its regulation is still poorly understood. Here, we report that the ubiquitous second messenger cyclic dimeric GMP (c-di-GMP) is critical for the formation of cysts in Azotobacter vinelandii Upon encystment induction, the levels of c-di-GMP increased, reaching a peak within the first 6 h. In the absence of the diguanylate cyclase MucR, however, the levels of this second messenger remained low throughout the developmental process. A. vinelandii cysts are surrounded by two alginate layers with variable proportions of guluronic residues, which are introduced into the final alginate chain by extracellular mannuronic C-5 epimerases of the AlgE1 to AlgE7 family. Unlike in Pseudomonas aeruginosa, MucR was not required for alginate polymerization in A. vinelandii Conversely, MucR was necessary for the expression of extracellular alginate C-5 epimerases; therefore, the MucR-deficient strain produced cyst-like structures devoid of the alginate capsule and unable to resist desiccation. Expression of mucR was partially dependent on the response regulator AlgR, which binds to two sites in the mucR promoter, enhancing mucR transcription. Together, these results indicate that the developmental process of A. vinelandii is controlled through a signaling module that involves activation by the response regulator AlgR and c-di-GMP accumulation that depends on MucR.IMPORTANCEA. vinelandii has served as an experimental model for the study of the differentiation processes to form metabolically dormant cells in Gram-negative bacteria. This work identifies c-di-GMP as a critical regulator for the production of alginates with specific contents of guluronic residues that are able to structure the rigid laminated layers of the cyst envelope. Although allosteric activation of the alginate polymerase complex Alg8-Alg44 by c-di-GMP has long been recognized, our results show a previously unidentified role during the polymer modification step, controlling the expression of extracellular alginate epimerases. Our results also highlight the importance of c-di-GMP in the control of the physical properties of alginate, which ultimately determine the desiccation resistance of the differentiated cell.


Assuntos
Azotobacter vinelandii/enzimologia , Proteínas de Bactérias/metabolismo , Carboidratos Epimerases/metabolismo , GMP Cíclico/análogos & derivados , Alginatos/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/crescimento & desenvolvimento , Azotobacter vinelandii/metabolismo , Proteínas de Bactérias/genética , Carboidratos Epimerases/genética , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-32426348

RESUMO

Poly-(3-hydroxyalkanoates) (PHAs) are bacterial carbon and energy storage compounds. These polymers are synthesized under conditions of nutritional imbalance, where a nutrient is growth-limiting while there is still enough carbon source in the medium. On the other side, the accumulated polymer is mobilized under conditions of nutrient accessibility or by limitation of the carbon source. Thus, it is well known that the accumulation of PHAs is affected by the availability of nutritional resources and this knowledge has been used to establish culture conditions favoring high productivities. In addition to this effect of the metabolic status on PHAs accumulation, several genetic regulatory networks have been shown to drive PHAs metabolism, so the expression of the PHAs genes is under the influence of global or specific regulators. These regulators are thought to coordinate PHAs synthesis and mobilization with the rest of bacterial physiology. While the metabolic and biochemical knowledge related to the biosynthesis of these polymers has led to the development of processes in bioreactors for high-level production and also to the establishment of strategies for metabolic engineering for the synthesis of modified biopolymers, the use of knowledge related to the regulatory circuits controlling PHAs metabolism for strain improvement is scarce. A better understanding of the genetic control systems involved could serve as the foundation for new strategies for strain modification in order to increase PHAs production or to adjust the chemical structure of these biopolymers. In this review, the regulatory systems involved in the control of PHAs metabolism are examined, with emphasis on those acting at the level of expression of the enzymes involved and their potential modification for strain improvement, both for higher titers, or manipulation of polymer properties. The case of the PHAs producer Azotobacter vinelandii is taken as an example of the complexity and variety of systems controlling the accumulation of these interesting polymers in response to diverse situations, many of which could be engineered to improve PHAs production.

10.
World J Microbiol Biotechnol ; 36(3): 46, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32140791

RESUMO

Azotobacter vinelandii is a microorganism with biotechnological potential because its ability to produce alginate and polyhydroxybutyrate. Large-scale biotechnological processes are oriented to sustainable production by using biomass hydrolysates that are mainly composed by glucose and xylose. In the present study, it was observed that A. vinelandii was unable to consume xylose as the sole carbon source and that glucose assimilation in the presence of xylose was negatively affected. Adaptive Laboratory Evolution (ALE) was used as a metabolic engineering tool in A. vinelandii, to improve both carbohydrate assimilation. As a result of ALE process, the CT387 strain was obtained. The evolved strain (CT387) grown in shaken flask cultivations with xylose (8 g L-1) and glucose (2 g L-1), showed an increase of its specific growth rate (µ), as well as of its glucose and xylose uptake rates of 2, 6.45 and 3.57-fold, respectively, as compared with the parental strain. At bioreactor level, the µ, the glucose consumption rate and the relative expression of gluP that codes for the glucose permease in the evolved strain were also higher than in the native strain (1.53, 1.29 and 18-fold, respectively). Therefore, in the present study, we demonstrated the potential of ALE as a metabolic engineering tool for improving glucose and xylose consumption in A. vinelandii.


Assuntos
Azotobacter vinelandii/metabolismo , Glucose/metabolismo , Engenharia Metabólica/métodos , Xilose/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomassa , Reatores Biológicos , Meios de Cultura/química , Fermentação , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação
11.
Microbiology (Reading) ; 165(10): 1107-1116, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31329095

RESUMO

Azotobacter vinelandii is a soil bacterium that is able to synthesize poly-ß-hydroxybutyrate (PHB), a polymer used to produce biodegradable plastic. PHB is stored in the cytoplasm as granules surrounded by several proteins such as the major phasin PhbP, PHB synthase and PHB depolymerase, among others. Many studies have reported the presence of membrane proteins on PHB granules due to contamination during the polymer extraction procedures. Previously, the outer membrane protein I (OprI) was detected on the polymer granules in A. vinelandii. In this study, by using random transposon mutagenesis, we identified that a mutation in the oprI gene diminished PHB accumulation in A. vinelandii on solid medium. Electron microscopy confirmed the low polymer production by the oprI mutant. Analysis of PHB granules by Tricine-SDS-PAGE revealed that the absence of OprI affected the protein profile of the granules, suggesting that OprI could have a structural role in A. vinelandii. Thus, some membrane proteins on PHB granules may not be artefacts as previously described.


Assuntos
Azotobacter vinelandii/metabolismo , Proteínas de Bactérias/metabolismo , Biopolímeros/metabolismo , Hidroxibutiratos/metabolismo , Lipoproteínas/metabolismo , Poliésteres/metabolismo , Sequência de Aminoácidos , Azotobacter vinelandii/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Meios de Cultura , Grânulos Citoplasmáticos/metabolismo , Lipoproteínas/química , Lipoproteínas/genética , Mutação , Ligação Proteica
12.
PLoS One ; 13(12): e0208975, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30543677

RESUMO

Azotobacter vinelandii is a nitrogen-fixing bacterium of the Pseudomonadaceae family that prefers the use of organic acids rather than carbohydrates. Thus, in a mixture of acetate-glucose, glucose is consumed only after acetate is exhausted. In a previous work, we investigated the molecular basis of this carbon catabolite repression (CCR) process under diazotrophic conditions. In the presence of acetate, Crc-Hfq inhibited translation of the gluP mRNA, encoding the glucose transporter in A. vinelandii. Herein, we investigated the regulation in the expression of the small non-coding RNAs (sRNAs) crcZ and crcY, which are known to antagonize the repressing activity of Hfq-Crc. Our results indicated higher expression levels of the sRNAs crcZ and crcY under low CCR conditions (i.e. glucose), in relation to the strong one (acetate one). In addition, we also explored the process of CCR in the presence of ammonium. Our results revealed that CCR also occurs under non-diazotrophic conditions as we detected a hierarchy in the utilization of the supplied carbon sources, which was consistent with the higher expression level of the crcZ/Y sRNAs during glucose catabolism. Analysis of the promoters driving transcription of crcZ and crcY confirmed that they were RpoN-dependent but we also detected a processed form of CrcZ (CrcZ*) in the RpoN-deficient strain derived from a cbrB-crcZ co-transcript. CrcZ* was functional and sufficient to allow the assimilation of acetate.


Assuntos
Azotobacter vinelandii/genética , Repressão Catabólica/genética , Glucose/metabolismo , Pequeno RNA não Traduzido/genética , Acetatos/metabolismo , Azotobacter vinelandii/crescimento & desenvolvimento , Azotobacter vinelandii/metabolismo , Carbono/química , Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Glucose/genética , Fixação de Nitrogênio/genética , Regiões Promotoras Genéticas , RNA Mensageiro/genética
13.
Microbiol Res ; 214: 91-100, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30031486

RESUMO

In bacteria, the 5'-end-dependent RNA degradation is triggered by the RNA pyrophosphohydrolase RppH converting tri/diphosphate to monophosphate transcripts. This study shows that in the soil bacterium Azotobacter vinelandii, inactivation of rppH gene negatively affected the production of bioplastic poly-ß-hydroxybutyrate (PHB) by reducing the expression at the translational level of PhbR, the specific transcriptional activator of the phbBAC biosynthetic operon. The effect of RppH on the translation of phbR seemed to be exerted through the translational repressor RsmA, as the inactivation of rsmA in the rppH mutant restored the phbR expression. Interestingly, in Escherichia coli inactivation of rppH also affected the expression of CsrA, the RsmA homolog. The level of the csrA transcript was higher and more stable in the E. coli rppH mutant than in the wild type strain. Additionally, and in contrast to the csrA mutants that are known to have a defective swimming phenotype, the E. coli rppH mutant showed a hyper-swimming phenotype that was suppressed by a csrA mutation, and the AvRppH restored to wild type level the swimming phenotype to the E. coli rppH mutant. We propose that in both A. vinelandii and E. coli, RppH activity plays a role in the expression of the translational regulator protein RsmA/CsrA.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Ligação a RNA/biossíntese , Proteínas Repressoras/biossíntese , Deleção de Genes , Biossíntese de Proteínas
15.
Appl Microbiol Biotechnol ; 102(6): 2693-2707, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29435618

RESUMO

A novel poly-3-hydroxybutyrate depolymerase was identified in Azotobacter vinelandii. This enzyme, now designated PhbZ1, is associated to the poly-3-hydroxybutyrate (PHB) granules and when expressed in Escherichia coli, it showed in vitro PHB depolymerizing activity on native or artificial PHB granules, but not on crystalline PHB. Native PHB (nPHB) granules isolated from a PhbZ1 mutant had a diminished endogenous in vitro hydrolysis of the polyester, when compared to the granules of the wild-type strain. This in vitro degradation was also tested in the presence of free coenzyme A. Thiolytic degradation of the polymer was observed in the nPHB granules of the wild type, resulting in the formation of 3-hydroxybutyryl-CoA, but was absent in the granules of the mutant. It was previously reported that cultures of A. vinelandii OP grown in a bioreactor showed a decrease in the weight average molecular weight (Mw) of the PHB after 20 h of culture, with an increase in the fraction of polymers of lower molecular weight. This decrease was correlated with an increase in the PHB depolymerase activity during the culture. Here, we show that in the phbZ1 mutant, neither the decrease in the Mw nor the appearance of a low molecular weight polymers occurred. In addition, a higher PHB accumulation was observed in the cultures of the phbZ1 mutant. These results suggest that PhbZ1 has a role in the degradation of PHB in cultures in bioreactors and its inactivation allows the production of a polymer of a uniform high molecular weight.


Assuntos
Azotobacter vinelandii/enzimologia , Azotobacter vinelandii/metabolismo , Hidrolases de Éster Carboxílico/deficiência , Hidroxibutiratos/química , Hidroxibutiratos/metabolismo , Poliésteres/química , Poliésteres/metabolismo , Reatores Biológicos/microbiologia , Hidrolases de Éster Carboxílico/metabolismo , Deleção de Genes , Peso Molecular
16.
Microbiology (Reading) ; 163(7): 1105-1115, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28699871

RESUMO

Azotobacter vinelandii, belonging to the Pseudomonadaceae family, is a free-living bacterium that has been considered to be a good source for the production of bacterial polymers such as alginate. In A. vinelandii the synthesis of this polymer is regulated by the Gac/Rsm post-transcriptional regulatory system, in which the RsmA protein binds to the mRNA of the biosynthetic algD gene, inhibiting translation. In several Pseudomonas spp. the two-component system CbrA/CbrB has been described to control a variety of metabolic and behavioural traits needed for adaptation to changing environmental conditions. In this work, we show that the A. vinelandii CbrA/CbrB two-component system negatively affects alginate synthesis, a function that has not been described in Pseudomonas aeruginosa or any other Pseudomonas species. CbrA/CbrB was found to control the expression of some alginate biosynthetic genes, mainly algD translation. In agreement with this result, the CbrA/CbrB system was necessary for optimal rsmA expression levels. CbrA/CbrB was also required for maximum accumulation of the sigma factor RpoS. This last effect could explain the positive effect of CbrA/CbrB on rsmA expression, as we also showed that one of the promoters driving rsmA transcription was RpoS-dependent. However, although inactivation of rpoS increased alginate production by almost 100 %, a cbrA mutation increased the synthesis of this polymer by up to 500 %, implying the existence of additional CbrA/CbrB regulatory pathways for the control of alginate production. The control exerted by CbrA/CbrB on the expression of the RsmA protein indicates the central role of this system in regulating carbon metabolism in A. vinelandii.


Assuntos
Azotobacter vinelandii/metabolismo , Proteínas de Bactérias/metabolismo , Flavoproteínas/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/metabolismo , Alginatos , Azotobacter vinelandii/genética , Proteínas de Bactérias/genética , Flavoproteínas/genética , Ácido Glucurônico/biossíntese , Ácidos Hexurônicos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
17.
Sci Rep ; 7(1): 858, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28404995

RESUMO

Azotobacter vinelandii, a strict aerobic, nitrogen fixing bacterium in the Pseudomonadaceae family, exhibits a preferential use of acetate over glucose as a carbon source. In this study, we show that GluP (Avin04150), annotated as an H+-coupled glucose-galactose symporter, is the glucose transporter in A. vinelandii. This protein, which is widely distributed in bacteria and archaea, is uncommon in Pseudomonas species. We found that expression of gluP was under catabolite repression control thorugh the CbrA/CbrB and Crc/Hfq regulatory systems, which were functionally conserved between A. vinelandii and Pseudomonas species. While the histidine kinase CbrA was essential for glucose utilization, over-expression of the Crc protein arrested cell growth when glucose was the sole carbon source. Crc and Hfq proteins from either A. vinelandii or P. putida could form a stable complex with an RNA A-rich Hfq-binding motif present in the leader region of gluP mRNA. Moreover, in P. putida, the gluP A-rich Hfq-binding motif was functional and promoted translational inhibition of a lacZ reporter gene. The fact that gluP is not widely distributed in the Pseudomonas genus but is under control of the CbrA/CbrB and Crc/Hfq systems demonstrates the relevance of these systems in regulating metabolism in the Pseudomonadaceae family.


Assuntos
Azotobacter vinelandii/metabolismo , Proteínas de Bactérias/metabolismo , Repressão Catabólica , Glucose/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Azotobacter vinelandii/genética , Proteínas de Bactérias/genética , Histidina Quinase/genética , Histidina Quinase/metabolismo , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Pseudomonas/genética , Pseudomonas/metabolismo
18.
Cell Stress Chaperones ; 22(3): 397-408, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28258486

RESUMO

Late embryogenesis abundant (LEA) proteins constitute a large protein family that is closely associated with resistance to abiotic stresses in multiple organisms and protect cells against drought and other stresses. Azotobacter vinelandii is a soil bacterium that forms desiccation-resistant cysts. This bacterium possesses two genes, here named lea1 and lea2, coding for avLEA1 and avLEA2 proteins, both containing 20-mer motifs characteristic of eukaryotic plant LEA proteins. In this study, we found that disruption of the lea1 gene caused a loss of the cysts' viability after 3 months of desiccation, whereas at 6 months, wild-type or lea2 mutant strain cysts remained viable. Vegetative cells of the lea1 mutant were more sensitive to osmotic stress; cysts developed by this mutant were also more sensitive to high temperatures than cysts or vegetative cells of the wild type or of the lea2 mutant. Expression of lea1 was induced several fold during encystment. In addition, the protective effects of these proteins were assessed in Escherichia coli cells. We found that E. coli cells overexpressing avLEA1 were more tolerant to salt stress than control cells; finally, in vitro analysis showed that avLEA1 protein was able to prevent the freeze thaw-induced inactivation of lactate dehydrogenase. In conclusion, avLEA1 is essential for the survival of A. vinelandii in dry conditions and for protection against hyper-osmolarity, two major stress factors that bacteria must cope with for survival in the environment. This is the first report on the role of bacterial LEA proteins on the resistance of cysts to desiccation.


Assuntos
Azotobacter vinelandii/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Bases de Dados Genéticas , Escherichia coli/metabolismo , L-Lactato Desidrogenase/metabolismo , Mutagênese , Pressão Osmótica , Proteínas de Plantas/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Estresse Fisiológico , Temperatura , Termotolerância
19.
Mol Microbiol ; 104(2): 197-211, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28097724

RESUMO

The nitrogen-related phosphotransferase system (PTSNtr ) is composed of the EINtr , NPr and EIIANtr proteins that form a phosphorylation cascade from phosphoenolpyruvate. PTSNtr is a global regulatory system present in most Gram-negative bacteria that controls some pivotal processes such as potassium and phosphate homeostasis, virulence, nitrogen fixation and ABC transport activation. In the soil bacterium Azotobacter vinelandii, unphosphorylated EIIANtr negatively regulates the expression of genes related to the synthesis of the bioplastic polyester poly-ß-hydroxybutyrate (PHB) and cyst-specific lipids alkylresorcinols (ARs). The mechanism by which EIIANtr controls gene expression in A. vinelandii is not known. Here, we show that, in presence of unphosphorylated EIIANtr , the stability of the stationary phase sigma factor RpoS, which is necessary for transcriptional activation of PHB and ARs synthesis related genes, is reduced, and that the inactivation of genes coding for ClpAP protease complex in strains that carry unphosphorylated EIIANtr , restored the levels and in vivo stability of RpoS, as well as the synthesis of PHB and ARs. Taken together, our results reveal a novel mechanism, by which EIIANtr globally controls gene expression in A. vinelandii, where the unphosphorylated EIIANtr induces the degradation of RpoS by the proteolytic complex ClpAP.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Fosfotransferases/metabolismo , Azotobacter vinelandii/genética , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica/genética , Hidroxibutiratos/metabolismo , Fixação de Nitrogênio , Fosfoenolpiruvato/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/fisiologia , Fosforilação , Fosfotransferases/fisiologia , Poliésteres/metabolismo , Potássio/metabolismo , Fator sigma/metabolismo , Ativação Transcricional
20.
FEMS Microbiol Lett ; 364(2)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27940465

RESUMO

Azotobacter vinelandii forms cysts resistant to desiccation and produces polyhydroxybutyrate (PHB), alginate and alkylresorcinols (ARs) that are components of mature cysts. The expression of genes involved in the synthesis of these compounds is under the control of the GacA-RsmA global regulatory system where the RsmA protein represses the translation of mRNAs involved in the synthesis of these polymers. The synthesis of PHB and ARs is also controlled by the Nitrogen-regulated phosphotransferase system (PTSNtr) global regulatory system. When unphosphorylated, the Enzyme IIANtr (EIIANtr) protein impairs the synthesis of PHB and ARs. Here we show that cells of gacA mutants, as well as mutants that carry the EIIANtr protein in its unphosphorylated state, have similar encysting negative phenotypes. Interestingly, we found that in the gacA mutant strain, the EIIANtr protein was present in its unphosphorylated state. These data indicated that in addition to the GacA-RsmA system, GacA controls polymer synthesis and encystment by controlling the phosphorylation of the EIIANtr, revealing a previously unrecognized link between GacA and PTSNtr.


Assuntos
Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Hidroxibutiratos/metabolismo , Fosforilação , Poliésteres/metabolismo , Processamento de Proteína Pós-Traducional , Resorcinóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...